Chemical Treatments for Insect Cell Differentiation: The Effects of 20-Hydroxyecdysone and Veratridine on Cultured Spodoptera frugiperda ( Sf 21) Insect Cell Ultrastructure

Previous studies have shown that insect cell cultures stop dividing, form clumps, and can be induced to grow processes reminiscent of axons, when the culture medium is supplemented with 20-hydroxyecdysone, insulin, or an agent that mimics their action, such as the ecdysone agonist, methoxyfenozide.Those cell growing processes resemble nerve cells, and the present study evaluates the ultrastructure of these cultures by transmission electron microscopy. <i>Sf</i>21 cells treated with 20-hydroxyecdysone (with or without veratridine amendment) and subjected to ultrastructural analysis had a similar somatic appearance to control cells, with slight changes in organelles and organization, such as a greater number of cytoplasmic vacuoles and mitochondrial granules.
Finger-like projections were observed between control and treated cells. However, no structural markers of synaptic contacts (e.g., vesicles or synaptic thickenings) were observed in controls, 20-hydroxyecdysone, or 20-hydroxyecdysone + veratridine treated cells. It is concluded that additional agents would be required to induce functional synaptogenesis in <i>Sf</i>21 cells.

The vital hormone 20-hydroxyecdysone controls ATP production by upregulating binding of Trehalase 1 with ATP synthase subunit α in Helicoverpa armigera

Trehalose is the major “blood sugar” of insects and it plays a crucial role in energy supply and as a stress protectant. The hydrolysis of trehalose occurs only under the enzymatic control of trehalase (Treh), which plays important roles in growth and development, energy supply, chitin biosynthesis, and abiotic stress responses. Previous reports have revealed that the vital hormone 20-hydroxyecdysone (20E) regulates Treh, but the detailed mechanism underlying 20E regulating Treh remains unclear. In this study, we investigated the function of HaTreh1 in Helicoverpa armigera larvae.
Results showed that the transcript levels and enzymatic activity of HaTreh1 were elevated during molting and metamorphosis stages in the epidermis, midgut, and fat body, and that 20E upregulated the transcript levels of HaTreh1 through the classical nuclear receptor complex EcR-B1/USP1. HaTreh1 is a mitochondria protein. We also found that knockdown of HaTreh1 in the fifth- or sixth- instar larvae resulted in weight loss and increased mortality. Yeast two-hybrid, Co-IP, and GST pull-down experiments demonstrated that HaTreh1 bound with ATP synthase subunit alpha (HaATPs-α) and that this binding increased under 20E treatment. In addition, 20E enhanced the transcript level of HaATPs-α and ATP content. Finally, the knockdown of HaTreh1 or HaATPs-α decreased the induction effect of 20E on ATP content. Altogether, these findings demonstrate that 20E controls ATP production by up-regulating the binding of HaTreh1 to HaATPs-α in H. armigera.

Ecdysone and 20-hydroxyecdysone are not required to activate glycolytic gene expression in Drosophila melanogaster embryos

  • Many of the Drosophila enzymes involved in carbohydrate metabolism are coordinately up-regulated approximately midway through embryogenesis. Previous studies have demonstrated that this metabolic transition is controlled by the Drosophila Estrogen-Related Receptor (dERR), which is stabilized and activated immediately prior to onset of glycolytic gene expression.
  • The mechanisms that promote dERR activity, however, are poorly understood and other transcriptional regulators could control this metabolic transition, independent of dERR. In this regard, the steroid hormone 20-hydroxyecdysone (20E) represents an intriguing candidate for regulating glycolytic gene expression in embryos – not only does the embryonic 20E pulse immediately precede transcriptional up-regulation of glycolytic metabolism, but 20E is also known to promote Lactate dehydrogenase gene expression.
  • Here I test the hypothesis that embryonic 20E signaling is required to activate glycolytic gene expression. Using developmental northern blots, I demonstrate that the transcriptional up-regulation of glycolytic genes during embryogenesis still occurs in shadow mutants, which are unable to synthesize either ecdysone or 20E. My finding indicates that ecdysone and 20E signaling are not required for this mid-embryonic metabolic transition.

20-Hydroxyecdysone activates the protective arm of the RAAS via Mas receptor

20-Hydroxyecdysone (20E) is a steroid hormone that plays a key role in insect development through nuclear ecdysteroid receptors (EcR/RXR complex) and at least one membrane GPCR receptor (DopEcR). It also displays numerous pharmacological effects in mammals, where its mechanism of action is still debated, involving either an unidentified GPCR or the estrogen ERβ receptor. The goal of this study was to better understand 20E mechanism of action in mammals.
A mouse myoblast cell line (C2C12) and the gene expression of myostatin (a negative regulator of muscle growth) was used as a reporter system of anabolic activity. Experiments using protein-bound 20E established the involvement of a membrane receptor. 20E-like effects were also observed with angiotensin-(1-7), the endogenous ligand of Mas. Additionally, the effect on myostatin gene expression was abolished by Mas receptor knock-down using small interfering RNA (siRNA) or pharmacological inhibitors. 17β-Estradiol (E2) also inhibited myostatin gene expression, but protein-bound E2 was inactive, and E2 activity was not abolished by angiotensin-(1-7) antagonists. A mechanism involving cooperation between the Mas receptor and a membrane-bound palmitoylated estrogen receptor is proposed.
The possibility to activate the Mas receptor with a safe steroid molecule is consistent with the pleiotropic pharmacological effects of ecdysteroids in mammals and, indeed, the proposed mechanism may explain the close similarity between angiotensin-(1-7)’s and 20E’s effects. Our findings open up many possible therapeutic developments involving stimulation of the protective arm of the renin-angiotensin-aldosterone system (RAAS) with 20E.


H918750 Toronto Research Chemicals 10g 293 EUR


MBS384027-10mg MyBiosource 10mg 170 EUR


MBS384027-1mLinDMSO MyBiosource 1mL(inDMSO) 165 EUR


MBS384027-25mg MyBiosource 25mg 240 EUR


MBS384027-50mg MyBiosource 50mg 345 EUR


MBS384027-5x50mg MyBiosource 5x50mg 1550 EUR

20-Hydroxyecdysone, 90%

GP0436 Glentham Life Sciences 250mg 65.14 EUR

20-Hydroxyecdysone, 97%

GP9112 Glentham Life Sciences 25mg 202.91 EUR

20-Hydroxyecdysone, 97%

GP9112-100 Glentham Life Sciences 100 221.5 EUR

20-Hydroxyecdysone, 97%

GP9112-100MG Glentham Life Sciences 100 mg 303.6 EUR

20-Hydroxyecdysone, 97%

GP9112-25 Glentham Life Sciences 25 79.1 EUR

20-Hydroxyecdysone, 97%

GP9112-25MG Glentham Life Sciences 25 mg 132 EUR

20-Hydroxyecdysone, 90%

GP0436-1 Glentham Life Sciences 1 71.1 EUR

20-Hydroxyecdysone, 90%

GP0436-1G Glentham Life Sciences 1 g 122.4 EUR

20-Hydroxyecdysone, 90%

GP0436-250 Glentham Life Sciences 250 31.7 EUR

20-Hydroxyecdysone, 90%

GP0436-250MG Glentham Life Sciences 250 mg 74.4 EUR


H918752 Toronto Research Chemicals 100mg 4500 EUR

CRAB 20-Hydroxyecdysone

QY-E160051 Qayee Biotechnology 96T 573.6 EUR

20-hydroxyecdysone 3-acetate

TBW01415 ChemNorm 10mg Ask for price

20-Hydroxyecdysone 22-Acetate

H918753 Toronto Research Chemicals 250mg 4500 EUR

20-Hydroxyecdysone Standard, 200UL

C240-200UL Arbor Assays 200UL 207 EUR

20-Hydroxyecdysone Standard, 40UL

C240-40UL Arbor Assays 40UL 85 EUR

Rat 20-Hydroxyecdysone ELISA kit

E01A13879 BlueGene 96T 700 EUR

Goat 20-Hydroxyecdysone ELISA kit

E01A48787 BlueGene 96T 700 EUR

Human 20-Hydroxyecdysone ELISA kit

E01A5125 BlueGene 96T 700 EUR

Mouse 20-Hydroxyecdysone ELISA kit

E01A22619 BlueGene 96T 700 EUR

Sheep 20-Hydroxyecdysone ELISA kit

E01A101080 BlueGene 96T 700 EUR

Human 20-Hydroxyecdysone ELISA Kit

MBS3802609-10x96StripWells MyBiosource 10x96-Strip-Wells 6725 EUR

Human 20-Hydroxyecdysone ELISA Kit

MBS3802609-48StripWells MyBiosource 48-Strip-Wells 550 EUR

Human 20-Hydroxyecdysone ELISA Kit

MBS3802609-5x96StripWells MyBiosource 5x96-Strip-Wells 3420 EUR

Identification and Functional Analysis of G Protein-Coupled Receptors in 20-Hydroxyecdysone Signaling From the Helicoverpa armigera Genome

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors in animals and humans, which transmit various signals from the extracellular environment into cells. Studies have reported that several GPCRs transmit the same signal; however, the mechanism is unclear. In the present study, we identified all 122 classical GPCRs from the genome of Helicoverpa armigera, a lepidopteran pest species. Twenty-four GPCRs were identified as upregulated at the metamorphic stage by comparing the transcriptomes of the midgut at the metamorphic and feeding stages. Nine of them were confirmed to be upregulated at the metamorphic stage. RNA interference in larvae revealed the prolactin-releasing peptide receptor (PRRPR), smoothened (SMO), adipokinetic hormone receptor (AKHR), and 5-hydroxytryptamine receptor (HTR) are involved in steroid hormone 20-hydroxyecdysone (20E)-promoted pupation. Frizzled 7 (FZD7) is involved in growth, while tachykinin-like peptides receptor 86C (TKR86C) had no effect on growth and pupation.
Via these GPCRs, 20E regulated the expression of different genes, respectively, including Pten (encoding phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase), FoxO (encoding forkhead box O), BrZ7 (encoding broad isoform Z7), Kr-h1 (encoding Krüppel homolog 1), Wnt (encoding Wingless/Integrated) and cMyc, with hormone receptor 3 (HHR3) as their common regulating target. PRRPR was identified as a new 20E cell membrane receptor using a binding assay. These data suggested that 20E, via different GPCRs, regulates different gene expression to integrate growth and development.

Leave a Comment

Your email address will not be published.

Scroll to Top